Breakout Session on Unifying Themes

Nanoscience for Bio-Synthetic
Wireless Sensor Networks

John Reif, Christof Teuscher, Arnd Pralle, Bernardo Barbiellini, Jinglin Fu, Chengde Mao
What are the converging scientific and research aspects for nano-based bio-synthetic wireless sensor networks? (1)

- **Recent advances:**
 - Self-assembly can be used to obtain complex structures.
 - Our basic understanding of biological sensing and signaling at the cellular level has significantly advanced.
 - This has led to biosynthetic sensors for almost every single signal in biology.
 - Ability to engineer special purpose wireless sensors is very advanced.

- **General challenges:**
 - Delivering sufficient energy to and from biological signals into the conventional microelectronic scale wireless signaling devices.
 - Building the actual signal transducer.
 - Finding applications of key importance in medicine.
 - Channel sharing, interference, addressing, scalability.
 - System level integration.
What are the converging scientific and research aspects for nano-based bio-synthetic wireless sensor networks? (2)

• Moderate challenge:
 – Read out every neuron of a C. elegans by using wireless transducers.
What are the promising avenues to integrate inorganic nano-devices and biological parts? (1)

- **Promising avenues:**
 - **Synthesis of inorganic nano-devices**
 - biological synthesis: Bacterial magnetosome
 - chemical synthesis
 - **Directed self-assembly:**
 - using tiles
 - scaffolds, e.g., DNA origami or a biological existing structure
 - assembly of or on inorganic membrane surfaces
 - **Novel biological sensors**
 - paramagnetic nano-particles
 - a combination of biological sensors with inorganic transducer (e.g., semiconducting quantum dots)
What are the promising avenues to integrate inorganic nano-devices and biological parts? (2)

• Promising avenues (continued):
 – Hybrid sensing device incorporating biological sensor with photonic transduction and inorganic transduction for wireless transmission.

• Challenges:
 – Power all components, particularly the inorganic transducers used for wireless transmission.
 – Component stability, environmental issues, e.g. regeneration of components
 – Information bandwidth limitations due to small scale and low energy.
 – Thermal noise.
 – Enhance transducer sensitivity, range, and longevity.
 – Interaction between inorganic surface and molecules
What are the benefits and limitations of bio-synthetic wireless sensor networks?

• Potential benefits:
 – Scalable
 – Less invasive
 – Allows for deep tissue sensing
 – Can use molecular scale effectors as sensors and vice versa
 – Lower energy requirements