Communications and Energy-Harvesting in Nanosensor Networks

Michele C. Weigle
Intelligent Networking and Systems Lab (iNetS)
Department of Computer Science
Old Dominion University
Norfolk, VA

NSF Workshop on Biological Computations and Communications
November 9, 2012
My Background

• Vehicular Networking
 – the use of vehicles as sensors to detect traffic incidents on the road

• Sensor Networks for Emergency Assistance
 – re-tasking existing sensor networks for use in emergency situations
 – investigating energy issues
Why Not Go Smaller?
Nanosensor Networks

- Framework articulated by Ian Akyildiz's group at Georgia Tech
- Investigated network properties, coding, MAC protocols, energy harvesting
- We're just getting started, building on their work (many images from Akyildiz and Jornet)
Applications of Nanosensor Networks

- Biomedical
- Environmental
- Industrial and consumer goods
Nanosensor Networks

- Inspired by biological nanoscale networks
- Communication
 - molecular
 - electromagnetic - our focus
Electromagnetic Communication

• Graphene-based nanoantenna
 – graphene nanoribbons (GNR) formed by unzipping carbon nanotubes (CNT)

• Radiates waves in the terahertz (0.1-10 THz) band

http://www.jmtour.com/images/NatureUnzippingImages/TubeUnzipping.png
Terahertz Band

- Supports very high transmission rates in the short range
 - up to a few terabits per second
 - distances below 1 meter
Pulse-Based Communication

• Not feasible to generate high-power carrier signal used in classical communications
 – motivates the need for pulse-based communication

• Femtosecond-long pulses (10^{-15} second) proposed

• This introduces major changes in classical networking protocols
TS-OOK
(Time Spread On-Off Keying)

- **Example Encoding**
 - '1' - 100 fs (0.1 picosecond) pulse
 - '0' - silence
 - 50 ps between bits
TS-OOK Example

• With femtosecond pulses, probability of collision is almost non-existent
 – senders transmit when they have data ready

• With long inter-bit times, multiple senders can interleave transmissions
Communication and Power

• Max capacity of nano-battery - 800 pJ
• Transmission of single pulse - 1 pJ
• Reception of a single pulse - 0.1 pJ
Message Coding

- Encode the message such that there are more 0s transmitted than 1s
 - 0 is silence, costs no energy

- Code weight
 - average portion of 1s

- Lower code weight, more bits

<table>
<thead>
<tr>
<th>original (2 bits)</th>
<th>3-bit packet (weight = 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>01</td>
<td>001</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>
Energy Harvesting

• Nanosensors have the potential to harvest energy from their surroundings
 – solar, thermal, electromagnetic, vibration

• Vibration seems to be the best method for nanosensors

• Allows nanosensors to re-charge themselves
Energy Harvesting

- Time to charge depends on vibration rate (needs 2500 cycles to charge)
 - A/C vents (50 Hz) ≈ 50 sec
 - human heart beat (1 Hz) ≈ 42 min

- Charging time is not linear

- Arrival of energy is not predictable in all scenarios
Impact on Communication

• Energy harvesting phase is orders of magnitude larger than communication phase

• End-to-end delay significantly affected if forwarding nodes need to recharge before forwarding packet
Other Limitations

• Limited resources (memory, power) for storage and modulation

• Significant molecular absorption of pulses
 – expensive energy needed for retransmission
 – limited resources for error correction

• Dense network scenarios (100 nodes in 1 cm²) need special multi-hop design
Our Focus

• Model communications and energy-harvesting process

• Develop and evaluate strategies for coding, packet size, bit repetition, and packet retransmission to produce efficient and power-aware network transmissions

Joint work with PhD student Shahram Mohrehkesh and Dr. Stephan Olariu
Our Road Ahead

• We're just at the beginning of our investigation

• Development of customized protocol layers
 – pulse-based communication models
 • coding methods to send fewer 1s
 • error correction/detection methods: repetition, LDPC, hamming
 – energy harvesting-aware
 • MAC protocol
 • packet scheduling
 • packet formation
 – optimized model for throughput and delay, end2end delivery, reliability

• Development of simulation environment
Communications and Energy-Harvesting in Nanosensor Networks

Michele C. Weigle
Intelligent Networking and Systems Lab (iNetS)
Department of Computer Science
Old Dominion University
Norfolk, VA

mweigle@cs.odu.edu
http://www.cs.odu.edu/inets

NSF Workshop on Biological Computations and Communications
November 9, 2012